1993 B

I.
$$2 \text{ Mn}^{2+} + 4 \text{ OH}^- + \text{O}_2(g) \rightarrow 2 \text{ MnO}_2(s) + 2 \text{ H}_2\text{O}$$

II. $\text{MnO}_2(s) + 2 \text{ }\Gamma + 4 \text{ H}^+ \rightarrow \text{Mn}^{2+} + \text{I}_2(aq) + 2 \text{ H}_2\text{O}$
III. $2 \text{ S}_2\text{O}_3^{2-} + \text{I}_2(aq) \rightarrow \text{S}_4\text{O}_6^{2-} + 2 \text{ }\Gamma$

The amount of oxygen, O_2 , dissolved in water can be determined by titration. First, MnSO₄ and NaOH are added to a sample of water to convert all of the dissolved O_2 to MnO₂, as shown in equation I above. Then H_2SO_4 and KI are added and the reaction represented by equation II proceeds. Finally, the I_2 that is formed is titrated with standard sodium thiosulfate, $Na_2S_2O_3$, according to equation III.

- (a) According to the equation above, how many moles of $S_2O_3^{2-}$ are required for analyzing 1.00 mole of O_2 dissolved in water?
- (b) A student found that a 50.0-milliliter sample of water required 4.86 milliliters of 0.0112-molar $Na_2S_2O_3$ to reach the equivalence point. Calculate the number of moles of O_2 dissolved in this sample.
- (c) How would the results in (b) be affected if some I_2 were lost before the $S_2O_3^{2-}$ was added? Explain.
- (d) What volume of dry O₂ measured at 25°C and 1.00 atmosphere of pressure would have to be dissolved in 1.00 liter of pure water in order to prepare a solution of the same concentration as that obtained in (b)?
- (e) Name an appropriate indicator for the reaction shown in equation III and describe the change you would observe at the end point of the titration.